
In this problem, we will analyze Time-frequency representations of data containing the
gravitational-wave event GW170817, Which was the first observation by LIGO of a merger
of a binary neutron star system.

1 Data from the graph

(1.1) You are given semi-logarithmic graph, from which you need to extract values of fre-
quency and time. Find a linear expression to obtain actual time t from the measured
horizontal axis coordinate x. (2pt)

To make the scaling as accurate as possible, we take the time values far apart.
When x = 0.0 cm t = −30 s, using the ruler we can also measure that at t = 0 s we
have x = 11.1 cm. 1.0
This leads to

0.0 cm = (−30 s)A+B

11.1 cm = (0 s)A+B = B

A =
11.1 cm

30 s
= 0.37 cm/s

∴ t =
x− 11.1

0.37
s 1.0

(1.2) Similarly, find an expression for the frequency f as a function of the measured
coordinate y. (3pt)
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Analogues to the previous scaling,

0.0 cm = C log(30Hz) +D

5.3 cm = C log(500Hz) +D 1.0

5.3 cm = C log

(
500

30

)
C = 4.34 cm

D = −6.41 cm

∴ f = 10(
y+6.41
4.34 )Hz 2.0

(1.3) Using the relations that you obtained, extract at least 12 values of time and
corresponding frequency from the given graph. At least one of the values should correspond
to a frequency more than 100Hz. (6pt)

It is not necessary to use X-scaling as students can choose convenient points from
the graph.

x(cm) y(cm) t(s) f(Hz) f−8/3(Hz−8/3)

- 0.5 -28.0 39.1 5.67E-05

- 0.5 -26.0 39.1 5.67E-05

- 0.6 -24.0 41.3 4.92E-05

- 0.6 -22.0 41.3 4.92E-05

- 0.7 -20.0 43.5 4.27E-05

- 0.8 -18.0 45.9 3.71E-05

- 0.9 -16.0 48.4 3.22E-05

- 1.0 -14.0 51.0 2.79E-05

- 1.1 -12.0 53.8 2.43E-05

- 1.2 -10.0 56.7 2.11E-05

- 1.4 -8.0 63.1 1.59E-05

- 1.6 -6.0 70.1 1.20E-05

- 1.8 -4.0 78.0 0.90E-05

- 2.3 -2.0 101.7 0.43E-05

- 3.4 0.0 182.4 0.09E-05

0.5 points for each row (except

last column). Maximum 6 points.

2 Calculate system parameters

The most plausible explanation for this evolution of frequency is the in-spiralling of two
orbiting masses, m1 and m2, due to gravitational-wave emission. At the lower frequencies,
such evolution is characterized by the chirp mass

Mchirp =
(m1m2)

3/5

(m1 +m2)1/5
=

c3

G

[
5

96
π−8/3f−11/3ḟ

]3/5
where f and ḟ are the observed frequency and its time derivative and G and c are the
gravitational constant and speed of light.
(2.1) Linearize the equation given above and obtain the frequency dependence on time. (3pt)

Note: If xnẋ = k, then xn+1

(n+1) = kt+ C, where k, n and C are all some constants.
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96

5
π8/3

(
GMchirp

c3

)5/3

= f−11/3ḟ

∴

[
96

5
π8/3

(
GMchirp

c3

)5/3
]
t+

[
3

8

]
f−8/3 + C = 0 3.0

(2.2) Find chirp mass in terms of solar masses and its uncertainty, by using a millimeter
paper. (15pt)

Calculation of f−8/3 values 3.0
Properly drawn graph 6.0

slope =
8

3

[
96

5
π8/3

(
GMchirp

c3

)5/3
]

Mchirp =

[(
5

256

)3/5 c3

G
π−8/5

]
(slope)3/5 2.0

slope = 2.10× 10−6 2.0

∴ Mchirp = 2.39× 1030 kg = 1.20M⊙ 2.0

with 95% confidence interval

∆slope = 9× 10−8

∆Mchirp

Mchirp
=

3

5

∆slope

slope
= 0.04

∆Mchirp = 0.03M⊙

We realise that what is measured by the ground-based GW detectors is actually the detector-
frame masses, which are related to the source frame masses by

mdetector = (1 + z)m
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where z is the redshift of the binary.
(2.3) It is known that host galaxy NGC 4993 has a red shift z = 0.009783, find the

source frame chirp mass. (2pt)

Mchirp =
Mchirpdetactor

1 + z
=

1.20M⊙
1.009783

= 1.19M⊙ 2.0

(2.4) Find distance to the NGC 4993. (3pt)

According to the Hubble law,

D =
zc

H
=

0.009783× 3× 105

70
= 41.9Mpc 2.0

(2.5)The mass ratio q = m1/m2, is much harder to measure. Advanced waveform
analysis shows that q for this system was in the range of 0.73 to 1.0. Calculate range of
values for the masses m1 (primary) and m2 (secondary). (6pt)

Mchirp =
(m1m2)

3/5

(m1 +m2)1/5

∴ Mchirp = m2
5

√
q3

1 + q
2.0

This is an increasing function of q

∴ m2,min = Mchirp2
1/5 = 1.37M⊙

m2,max = 1.60M⊙ 1.0

Also, Mchirp =
m1

q
5

√
q3

1 + q
=

m1

5
√
q2(1 + q)

2.0

∴ m1,max = Mchirp2
1/5 = 1.37M⊙

m2,min = 1.17M⊙ 1.0

3 Speed of the gravitational wave

Gamma-ray burst GRB 170817A was observed by the Fermi Gamma-ray Burst Monitor
to be almost simultaneous with gravitational wave event. The same neutron star merger
was identified as the source of the signal. In the table below, the first column is time since
the arrival of the gravitational wave peak, which happened on 2017 August 17 at 12:41:04
UTC. This peak symbolized the start of the merger of the neutron stars. The second column
gives detector counts as measured in Fermi GBM. Background is already subtracted from
the signal.
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t(s) event count (/s)

0.5981 15

0.7975 -62

0.9968 9

1.1962 -24

1.3956 24

1.5949 -50

1.7943 0

1.9937 18

2.1930 53

2.3924 179

2.5918 176

2.7911 91

2.9905 26

3.1899 71

3.3892 38

3.5886 59

3.7880 21

(3.1) Plot event count over time on a millimeter paper. (6pt)

(3.2) Estimate the delay ∆t between start of the merger and start of the Gamma-ray
Burst. (1pt)

It appears that the event is starting from ∆t = 1.8 s. Some students may also write
∆t = 2.2 s as that is when the signal is truly above fluctuations seen before the event.
We will accept both the answers. 1.0

From this measurement it is possible to determine what is called the fractional speed
difference during the trip.

∆v

vEM
=

vGW − vEM

vEM

(3.3) Express this quantity in terms of ∆t and distance to the source D. (1pt)

By simple substitution we can calculate that

∆v

vEM
=

∆tvGW

D
≈ ∆tc

D
1.0

(3.4) If we conservatively assume that the peak of the gravitational wave signal and the
first GRB photons were emitted simultaneously, thus attributing the entire lag to faster
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travel by the gravitational wave signal, this time difference provides an upper bound on
∆v. Calculate this upper bound. (1pt)

∆v

vEM
= 4.2× 10−16 to 5.1× 10−16 1.0

(3.5) To obtain a lower bound on ∆v, one can assume that the two signals were emitted
at times differing by more than ∆t with the faster EM signal making up some of the
difference. Take maximum time delay as 10s and find lower bound. (1pt)

∆t′ = ∆t− 10 = −8.2 s to 7.8 s

From this time delay

∆v

vEM
= −1.9× 10−15 to 1.8× 10−15 1.0
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Data Analysis - Galactic Surveys

In Cosmology, observations of galaxy groups is very important for the study and verifica-
tion of complex theory models, Universe expansion, and its behaviour analysis. There are
numerous telescopes used only for galactic surveys and making special statistical analysis.
The product of all this are the catalogues of galaxies, which are the result of this observa-
tions and complex computational analysis.
Usually, galaxies form in groups inside very large dark matter Halos (that have a spherical
shape). The most matter is concentrated in the center, thus having a central large-mass
galaxy there is with high probability. In these problem, we will assume that all Halos have
one central galaxy and several satellite galaxies.
As one can guess, all of these requires a large amount of computational power: To distin-
guish galaxies, process corrected coordinates with redshifts and other methods, etc. The
complex statistical analysis involves calculating correlation functions for galaxy groups,
which is making a histogram for distances between all possible two galaxy pairs. The main
goal of this problem is to do theoretical statistical analysis of the observational data and
figure out what kind of galaxy groups have been observed. Having a theoretical model that
can deduce the characteristics of a galaxy groups with few observations is very useful for
scientists and saves lots of computational time and possible errors following those kind of
data analysis.
In Figure 1, you can see the probability densities of different galaxy groups. On X axis is
the distance, and on Y axis is probability density. There are six galaxy cluster types (A-F)
with corresponding densities. The goal of this problem will be to determine what kind of
Dark matter Halo groups we are observing.

Figure 1: Probability density of all possible galaxy pairs (from different/same dark matter
Halos)

Part 1 (35p)

You are given Table 1. that represents the data from observations. From other data and
observations it was concluded that all these galaxies belong to the same dark matter halo.
You can see the coordinates of satellite galaxies. The coordinate for the central galaxy is
8.300; 6.200; 1.100. Additional column represents the number of galaxies spotted very near
to that points. For simplicity, you can assume that the coordinates are the same for them.
These coordinates are given in Cartesian coordinate system center of which coincides to the
observer on Earth.
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x (MPC) y (MPC) z (MPC) N (Number of galaxies)
1 8.401 6.309 1.394 291
2 9.883 7.189 1.506 170
3 8.883 6.413 2.226 253
4 8.444 6.569 2.439 8
5 7.782 6.048 -0.358 72
6 8.780 6.305 2.463 120
7 7.990 5.881 0.532 302
8 8.540 6.388 0.369 52
9 7.975 6.030 1.216 28
10 7.072 5.431 0.488 40
11 8.037 5.965 0.615 72
12 8.681 6.483 0.734 379
13 7.115 5.259 1.403 82
14 9.587 7.130 0.322 62
15 8.193 6.104 0.915 305
16 7.613 5.847 1.666 293

Before we start converting Cartesian coordinates to spherical we need to find appropriate
local coordinate system with origin in the center of the halo.

(a) Plot all the pairs of Cartesian coordinates on the separate graphs. Given the fact that
this halo is shaped like a disk find the direction of its normal. (4p)

(b) Write down the unit vectors of local coordinate system. Choose appropriate orienta-
tion and take X ′ axis such that coincides the line of sight. (3p)

(c) Convert the given Cartesian coordinates to the local X ′Y ′Z ′ coordinates. Fill in the
values of Table 1 (a separate sheet is given in the answer sheets): X ′, Y ′, Z ′. (8p)

(d) Convert the local Cartesian coordinates into spherical (take the central galaxy as the
center of the coordinate system, ϕ is calculated relative to X ′ axis and θ - relative to
Z ′ axis). Fill in the other values of Table 1 (a separate sheet is given in the answer
sheets): r, θ, ϕ. (8p)

(e) Plot the histogram (parameter dependence on total number of data points that fall
in a given limits) with 8 bins of Satellite galaxy distances from the central Galaxy.
Take 0.2-2 MPC as the histogram range. The histogram has to be also converted into
probability density function. Note: The probability density function is the probability
at a given point. You can avoid plotting two separate graphs by just noting other
limits of Y axis in case of probability function. (6p)

(f) Theoretically the histogram is given by the following equation

H (r) =
1

A+B · r
(1)

Linearize the given dependence and find values A and B from the graph (6p)

Part 2 (20p)

It is well-known that while measuring distance to an object with redshift method (large
relative velocity due to the expansion of the universe) errors might occur because of the
motion of the galaxies. The aim of this chapter is to correct these errors.
Assume that the central galaxy has a mass of 1010MSun, all satellite galaxies move in circular
orbits and interactions between them is negligible.
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(a) Use the data filled with you in Table 1. to plot the histogram of polar angle (take
the width of histogram bins as 60 degrees). The angle distribution should be uniform,
but it is not. Calculate the square deviation from the uniform value. (6p)

(b) The galaxies originally in 60-120 and 240-300 bins would need most correction since
they are the ones which move along the line of sight. Assume that the angular coordi-
nates coincide with the center of the corresponding bin (90 and 270 in our case) and
write the expression as a function of distance from the center which describes change
of polar angles caused by circular motion of the galaxies. Hint: You can assume that
the distance from the centre doesn’t change significantly because of this correction.
(6p)

(c) Using the result of previous task correct the angles used in the last histogram. Plot
the new histogram (probability dependence on distance) with the corrected data.
Calculate the square deviation from the uniform value. (8p)

Part 3 (20p)

We have only calculated the central galaxy - satellite (from the same galaxy) histogram. It
is time to move on to calculating other relations.
The same observations and data analysis has been carried out for different Halos and their
central galaxies. The data for Figure 2. histogram only includes the distribution probability
density function of the distances between central galaxies in different dark matter Halos.
Suppose we have 500 Halos, thus 500 central galaxies (NC = 500). Take that the average
number of satellite in one Halo is 1000 (NS = 1000).

(a) Calculate the following quantities: (3 p)

1. NCC , total number of central galaxy pairs

2. N∗
CS , total number of central galaxy - satellite pairs in the same Halo

3. NCS , total number of central galaxy - satellite pairs in different Halos

4. N∗
SS , total number of satellite - satellite galaxy pairs in the same Halo

5. NSS , total number of satellite - satellite galaxy pairs in different Halos

Below is given the table for probability density values for different distances between central
galaxies in different dark matter Halos.

r (MPC) ρ
0.3125 0.406
0.5375 0.808
0.7625 1.341
0.9875 1.134
1.2125 0.479
1.4375 0.143
1.6625 0.073
1.8875 0.060

We can calculate all probability densities using the given Center-Center data and Center-
Satellite data which you calculated in part 1. The relations are following:

ρ∗SS(r) = c1ρ
∗
CS(r)

2r (2)

ρCS(r) = c2ρ
∗
CS(r)

2r
√
ρCC(r) + 1 (3)
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ρSS(r) = c3ρ
∗
CS(r)

2r(ρCC(r)− 5)2 (4)

Where c1, c2 and c3 are normalization constant and should be found for each density.

(b) Calculate and plot ρ∗SS(r), ρCS(r) and ρSS(r). (10p)

(c) Plot the final probability density of all galaxy pairs. Which one of 6 graphs on Figure
1 is most similar to you plot? (7p)
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Solutions - Part 1

Part (a)

If we plot given coordinates in XY, XZ and YZ planes we’ll see the following pictures. See
Figures 2, 3 and 4 (0.5p for each graph). By observing Figure 2 we can deduce that the
group is edge-on and its normal lies in XY plane. X ′ axis is along line of sight so it can be
calculated by normalizing 8.3̂i+ 6.2ĵ + 1.1k̂. So

x̂′ = 0.79667866̂i+ 0.59510936ĵ + 0.10558392k̂ (5)

(0.5p) Z ′ axis lays in XY plane and is perpendicular to X ′ so it can be calculated by
normalizing x̂′ × k̂

ẑ′ = 0.59845448̂i− 0.80115681ĵ (6)

(2p)

Figure 2: XY viewpoint of a cluster from observational site

Figure 3: XZ viewpoint of a cluster from observational site

Part (b)

One can choose x′ as line of sight (found in part(a)) (1p):

x̂′ = 0.79667866̂i+ 0.59510936ĵ + 0.10558392k̂ (7)
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Figure 4: YZ viewpoint of a cluster from observational site

z′ can be chosen as halo disk normal (found in part(a))(1p):

ẑ′ = 0.59845448̂i− 0.80115681ĵ (8)

And finally for y′ (1p):

ŷ′ = x̂′ × ẑ′ = 0.08458928̂i+ 0.06318717ĵ − 0.9944104k̂ (9)

Part (c)

Each coordinate in X ′Y ′Z ′ system can be found by following equations

x′ = x̂′ · (r⃗ − r⃗c) (10)

y′ = ŷ′ · (r⃗ − r⃗c) (11)

z′ = ẑ′ · (r⃗ − r⃗c) (12)

Where x̂′, ŷ′ and ẑ′ are unit vectors of local X ′Y ′Z ′ system, r⃗ is coordinate of a galaxy
and r⃗c is coordinate of the center.

This values are calculated in the following table (0.5p for each correct x, y′, z′ tuple):
x− xc y − yc z − zc x′ y′ z′

1 0.101124 0.109271 0.294476 0.176684 -0.277372 -0.027025
2 1.582909 0.989392 0.405895 1.892722 -0.207212 0.154641
3 0.582735 0.213285 1.126426 0.710112 -1.057359 0.177866
4 0.144328 0.369381 1.338567 0.476137 -1.295537 -0.209558
5 -0.517770 -0.151687 -1.458202 -0.656729 1.396668 -0.188336
6 0.480059 0.105110 1.362674 0.588881 -1.307808 0.203084
7 -0.309855 -0.319116 -0.568033 -0.496739 0.518483 0.070227
8 0.239541 0.188218 -0.730736 0.225694 0.758807 -0.007438
9 -0.324800 -0.169551 0.116378 -0.347375 -0.153915 -0.058541
10 -1.227659 -0.768684 -0.612379 -1.500158 0.456538 -0.118862
11 -0.263209 -0.234869 -0.485227 -0.400698 0.445410 0.030649
12 0.381200 0.282515 -0.365581 0.433222 0.413634 0.001792
13 -1.185021 -0.941303 0.302593 -1.472310 -0.460620 0.044950
14 1.286640 0.930147 -0.777889 1.496445 0.941150 0.024802
15 -0.106760 -0.095804 -0.184997 -0.161600 0.168879 0.012863
16 -0.686865 -0.352750 0.566244 -0.697350 -0.643470 -0.128449

6



Part (d)

Spherical coordinates can by calculated by following relations:

r =
√
x′2 + y′2 + z′2 (13)

ϕ = arctan
y′

x′
(14)

and signs of x’ and y’

θ = arccos
z

r
(15)

Calculated values are given in the following table (0.5p for each correct r, ϕ, θ tuple):
x′ y′ z′ r ϕ θ

1 0.176684 -0.277372 -0.027025 0.329974 5.279566 1.652789
2 1.892722 -0.207212 0.154641 1.910301 6.174141 1.489757
3 0.710112 -1.057359 0.177866 1.286042 5.303793 1.432047
4 0.476137 -1.295537 -0.209558 1.396079 5.064586 1.721471
5 -0.656729 1.396668 -0.188336 1.554814 2.010330 1.692226
6 0.588881 -1.307808 0.203084 1.448581 5.135477 1.430138
7 -0.496739 0.518483 0.070227 0.721461 2.334780 1.473302
8 0.225694 0.758807 -0.007438 0.791695 1.281697 1.580191
9 -0.347375 -0.153915 -0.058541 0.384430 3.558678 1.723672
10 -1.500158 0.456538 -0.118862 1.572587 2.846171 1.646452
11 -0.400698 0.445410 0.030649 0.599906 2.303400 1.519685
12 0.433222 0.413634 0.001792 0.598981 0.762273 1.567805
13 -1.472310 -0.460620 0.044950 1.543336 3.444801 1.541667
14 1.496445 0.941150 0.024802 1.767973 0.561416 1.556768
15 -0.161600 0.168879 0.012863 0.234094 2.334171 1.515821
16 -0.697350 -0.643470 -0.128449 0.957522 3.886829 1.705349

Part (e)

Using radii calculated above and number of galaxies for each data (rewritten below) one
can calculate number of galaxies in each bin. Range of bin 1 is (0.2, 0.425), bin 2 - (0.425,
0.65) and so on bin 8 - (1.775, 2.0).

r n
1 0.329974 291
2 1.910301 170
3 1.286042 253
4 1.396079 8
5 1.554814 72
6 1.448581 120
7 0.721461 302
8 0.791695 52
9 0.384430 28
10 1.572587 40
11 0.599906 72
12 0.598981 379
13 1.543336 82
14 1.767973 62
15 0.234094 305
16 0.957522 293

7



Correct values for each bin are: (0.5p for each correct n)
Center of the bin Number of the galaxies

1 0.312500 624
2 0.537500 451
3 0.762500 354
4 0.987500 293
5 1.212500 253
6 1.437500 210
7 1.662500 174
8 1.887500 170

Corresponding histogram is given on Figure 5. (1p)

Figure 5: Histogram: Number of galaxies dependence on distance (MPC), with a bin size
equal to 0.225 MPC

Histogram data as a table:
In order to get probability density function each value of histogram must be divided by

it integral on the whole region. The integral can be approximated by finding total area of
the rectangles:

I =
8∑

n=1

H(ri)d = 569.025 (16)

Where d = 0.225 is size of a bin. After dividing each data by I we get (0.25p for each
correct probability density):

Center of the bin Number of the galaxies Probability density
1 0.312500 624 1.096613
2 0.537500 451 0.792584
3 0.762500 354 0.622117
4 0.987500 293 0.514916
5 1.212500 253 0.444620
6 1.437500 210 0.369052
7 1.662500 174 0.305786
8 1.887500 170 0.298757

Plotting this data gives the graph on Figure 6 (1p)
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Figure 6: Probability density of center-satellite distances in the same halo

Part (f)

Since histogram equation has following form:

H (r) =
1

A+B · r
(17)

We should calculate 1/H(r) which gives the following values (0.125 for each correct 1/H) :
r H(r) 1/H(r)

1 0.312500 624 0.001603
2 0.537500 451 0.002217
3 0.762500 354 0.002825
4 0.987500 293 0.003413
5 1.212500 253 0.003953
6 1.437500 210 0.004762
7 1.662500 174 0.005747
8 1.887500 170 0.005882

Plotting this data gives Figure 7

Figure 7: Linearization for regression

Finding the slope and the intercept of this line (by graph or any other method) gives
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Following values:
A = 0.00065977;B = 0.00285494 (18)

2.5p for B in range 0.002-0.003 2.5p for A in range 0.0006-0.0008
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Solutions - Part 2

Part (a)

We can ϕ values from Part 1.c to distribute them in 60 degree bins. In bin 1 we have
number of galaxies which fall in (0, 60) degree range, in bin 2 - (60, 120) and so on bin 6 -
(300, 360).

Part 1.c data in degrees:
Angle Number of galaxies

1 302.496846 291
2 353.752245 170
3 303.884926 253
4 290.179429 8
5 115.183442 72
6 294.241133 120
7 133.773013 302
8 73.435830 52
9 203.897219 28
10 163.073590 40
11 131.975076 72
12 43.675004 379
13 197.372555 82
14 32.166754 62
15 133.738158 305
16 222.698869 293

We get the following data for the histogram (0.5p for each correct n):
Center of the bin Number of galaxies

1 30 441
2 90 124
3 150 719
4 210 403
5 270 128
6 330 714

Uniform value is total number of galaxies divides by 6 which is 421.5. Square deviation
is 241◦ (1p)

Graph is given on Figure 8 (2p)

Figure 8: Histogram: Number of galaxies dependence on ϕ angle, with a bin size equal to
60◦
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Part (b)

A galaxy with the orbital radius r around central mass M has velocity (2p):

v =

√
GM

r
(19)

This will cause to give the following error in distance along line of sight (2p):

d =
v

H
=

1

H

√
GM

r
(20)

Angle difference for galaxies at 90 and 270 degrees will be (2p):

α = arctan
d

r
= arctan

1

H

√
GM

r3
(21)

For detailed drawing see Figure 9

Figure 9: Drawing

Part (c)

Galaxies originally in bins of range (60, 120) and (240, 300) might move to (120, 180) and
(300, 360) respectively. So we should subtract correction value found in previous task to
the galaxies in bins 2 and 5 to see if they move to bins 1 and 4 respectively. (0.25p for each
correct corrected angle(

Original angle Corrected angle Number of galaxies
1 302.494665 276.136451 291
2 353.752069 351.714594 170
3 303.884728 300.199512 253
4 290.178642 290.178642 8
5 115.184577 115.184577 72
6 294.241835 294.241835 120
7 133.776280 125.061576 302
8 73.437747 73.437747 52
9 203.899065 203.899065 28
10 163.073490 160.346665 40
11 131.977481 120.548626 72
12 43.676971 43.676971 379
13 197.372956 197.372956 82
14 32.167948 32.167948 62
15 133.743596 94.077612 305
16 222.694636 222.694636 293
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New corrected distribution looks like this (0.3p for each correct n):
Center of the bin Number of galaxies

1 30 441
2 90 429
3 150 414
4 210 403
5 270 419
6 330 423

In this case square deviation equals to 12◦

(1p) And relevant graph is given on Figure 10 (1.2p)

Figure 10: Histogram: Corrected Number of galaxies dependence on ϕ angle, with a bin
size equal to 60◦
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Solutions - Part 3

Part (a)

With simple combinatorics one can get (0.6p for each correct N):

NCC = NC(NC − 1) = 249500 (22)

N∗
CS = NCNS = 500000 (23)

NCS = NC(NC − 1)NS = 249500000 (24)

N∗
SS = NCNS(NS − 1) = 499500000 (25)

NSS = NCNS(NC − 1)NS = 249500000000 (26)

Part (b)

We can calculate all probability densities using center-center and center-satellite densities.
Non-normalized values (with c1 = c2 = c3 = 1) are calculated in the following table (0.5p
for each correct tuple):

r ρ∗CS ρCC ρ∗SS ρSS ρCS

1 0.312500 1.096613 0.406141 0.375800 17.365137 0.975747
2 0.537500 0.792584 0.807863 0.337652 12.992898 0.994072
3 0.762500 0.622117 1.340510 0.295110 8.653487 0.988565
4 0.987500 0.514916 1.134011 0.261824 8.568351 0.837480
5 1.212500 0.444620 0.478630 0.239696 10.729180 0.638199
6 1.437500 0.369052 0.143154 0.195787 10.112507 0.458355
7 1.662500 0.305786 0.073165 0.155452 8.262279 0.352612
8 1.887500 0.298757 0.060971 0.168470 8.998531 0.379962

For normalization (same way as in Part 1.d) we get c1 = 2.18592; c2 = 0.79304; c3 =
0.0516. Multiplying relevant densities by this values gives (0.5p for each correct normalized
tuple):

r ρ∗SS ρSS ρCS

1 0.312500 0.822854 0.900750 0.770962
2 0.537500 0.739325 0.673957 0.785441
3 0.762500 0.646175 0.448866 0.781089
4 0.987500 0.573292 0.444450 0.661713
5 1.212500 0.524839 0.556535 0.504257
6 1.437500 0.428697 0.524548 0.362158
7 1.662500 0.340380 0.428574 0.278607
8 1.887500 0.368883 0.466764 0.300217

Plots are given on Figures 11 - 14 (0.5p for each plot).

Part (c)

Total probability density is weighted sum of all densities (4p):

ρ ∼
NCCρCC +N∗

CSρ
∗
CS +NCSρCS +N∗

SSρ
∗
SS +NSSρSS

NCC +N∗
CS +NCS +N∗

SS +NSS
(27)

Calculated values and normalized densities are given in the following table:
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Figure 11: Probability density of center-center distances in for different halos

Figure 12: Probability density of center-satellite distances in the different halos

Figure 13: Probability density of satellite-satellite distances in the different halos
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Figure 14: Probability density of satellite-satellite distances in the same halo

r Calculated ρ Normalized ρ
1 0.312500 0.004212 0.843662
2 0.537500 0.003606 0.722433
3 0.762500 0.002967 0.594357
4 0.987500 0.002693 0.539524
5 1.212500 0.002663 0.533361
6 1.437500 0.002265 0.453652
7 1.662500 0.001813 0.363239
8 1.887500 0.001968 0.394216

And final plot looks like this (Figure 15) (2p)

Figure 15: Final probability density

Most similar to this density is plot E on Figure 1 (1p).
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